Mathjax 快速参考
TL;DR
$$ e^{i\pi} + 1 = 0 $$
$$
\begin{align}
a x^2 + b x + c = 0 (a \not= 0) \\
\implies x = {-b \pm \sqrt{b^2-4ac} \over 2a}
\end{align}
$$
\begin{align}
a x^2 + b x + c = 0 (a \not= 0) \\\\
\implies x = {-b \pm \sqrt{b^2-4ac} \over 2a}
\end{align}
希腊字母
英文名称 |
输入 |
显示 |
输入 |
显示 |
输入 |
显示 |
Alpha |
A |
$A$(Α) |
\alpha |
$\alpha$ |
|
|
Beta |
B |
$B$(Β) |
\beta |
$\beta$ |
|
|
Gamma |
\Gamma |
$\Gamma$ |
\gamma |
$\gamma$ |
|
|
Delta |
\Delta |
$\Delta$ |
\delta |
$\delta$ |
|
|
Epsilon |
E |
$E$(Ε) |
\epsilon |
$\epsilon$ |
\varepsilon |
$\varepsilon$ |
Zeta |
Z |
$Z$(Ζ) |
\zeta |
$\zeta$ |
|
|
Eta |
H |
$H$(Η) |
\eta |
$\eta$ |
|
|
Theta |
\Theta |
$\Theta$ |
\theta |
$\theta$ |
\vartheta |
$\vartheta$ |
Iota |
I |
$I$(Ι) |
\iota |
$\iota$ |
|
|
Kappa |
K |
$K$(Κ) |
\kappa |
$\kappa$ |
|
|
Lambda |
\Lambda |
$\Lambda$ |
\lambda |
$\lambda$ |
|
|
Mu |
M |
$M$(Μ) |
\mu |
$\mu$ |
|
|
Nu |
N |
$N$(Ν) |
\nu |
$\nu$ |
|
|
Xi |
\Xi |
$\Xi$ |
\xi |
$\xi$ |
|
|
Omicron |
O |
$O$(Ο) |
\omicron |
$\omicron$ |
|
|
Pi |
\Pi |
$\Pi$ |
\pi |
$\pi$ |
\varpi |
$\varpi$ |
Rho |
P |
$P$(Ρ) |
\rho |
$\rho$ |
\varrho |
$\varrho$ |
Sigma |
\Sigma |
$\Sigma$ |
\sigma |
$\sigma$ |
\varsigma |
$\varsigma$ |
Tau |
T |
$T$(Τ) |
\tau |
$\tau$ |
|
|
Upsilon |
\Upsilon |
$\Upsilon$ |
\upsilon |
$\upsilon$ |
|
|
Phi |
\Phi |
$\Phi$ |
\phi |
$\phi$ |
\varphi |
$\varphi$ |
Chi |
X |
$X$(Χ) |
\chi |
$\chi$ |
|
|
Psi |
\Psi |
$\Psi$ |
\psi |
$\psi$ |
|
|
Omega |
\Omega |
$\Omega$ |
\omega |
$\omega$ |
|
|
常见符号
输入 |
显示 |
输入 |
显示 |
输入 |
显示 |
\epsilon |
$\epsilon$ |
E |
$E$ |
\varepsilon |
$\varepsilon$ |
\theta |
$\theta$ |
\Theta |
$\Theta$ |
\vartheta |
$\vartheta$ |
\pi |
$\pi$ |
\Pi |
$\Pi$ |
\varpi |
$\varpi$ |
\rho |
$\rho$ |
P |
$P$ |
\varrho |
$\varrho$ |
\sigma |
$\sigma$ |
\Sigma |
$\Sigma$ |
\varsigma |
$\varsigma$ |
\phi |
$\phi$ |
\Phi |
$\Phi$ |
\varphi |
$\varphi$ |
其他常用符号
输入 |
显示 |
输入 |
显示 |
\propto |
$\propto$ |
|
|
\partial |
$\partial$ |
|
|
\vert |
$\vert$ |
\Vert |
$\Vert$ |
特殊括号
输入 |
显示 |
输入 |
显示 |
\langle |
$\langle$ |
\rangle |
$\rangle$ |
\lceil |
$\lceil$ |
\rceil |
$\rceil$ |
\lfloor |
$\lfloor$ |
\rfloor |
$\rfloor$ |
\lbrace |
$\lbrace$ |
\rbrace |
$\rbrace$ |
运算符
关系运算符
输入 |
显示 |
输入 |
显示 |
输入 |
显示 |
输入 |
显示 |
\pm |
$\pm$ |
\times |
$\times$ |
\div |
$\div$ |
\mid |
$\mid$ |
\nmid |
$\nmid$ |
\cdot |
$\cdot$ |
\circ |
$\circ$ |
\ast |
$\ast$ |
\bigodot |
$\bigodot$ |
\bigotimes |
$\bigotimes$ |
\bigoplus |
$\bigoplus$ |
\leq |
$\leq$ |
\geq |
$\geq$ |
\neq |
$\neq$ |
\approx |
$\approx$ |
\equiv |
$\equiv$ |
\sum |
$\sum$ |
\prod |
$\prod$ |
\coprod |
$\coprod$ |
\backslash |
$\backslash$ |
集合运算符
输入 |
显示 |
输入 |
显示 |
输入 |
显示 |
输入 |
显示 |
\emptyset |
$\emptyset$ |
\in |
$\in$ |
\notin |
$\notin$ |
\subset |
$\subset$ |
\supset |
$\supset$ |
\subseteq |
$\subseteq$ |
\supseteq |
$\supseteq$ |
\bigcap |
$\bigcap$ |
\bigcup |
$\bigcup$ |
\bigvee |
$\bigvee$ |
\bigwedge |
$\bigwedge$ |
\biguplus |
$\biguplus$ |
对数运算符
输入 |
显示 |
输入 |
显示 |
输入 |
显示 |
\log |
$\log$ |
\lg |
$\lg$ |
\ln |
$\ln$ |
三角运算符
输入 |
显示 |
输入 |
显示 |
输入 |
显示 |
30^\circ |
$30^\circ$ |
\bot |
$\bot$ |
\angle A |
$\angle A$ |
\sin |
$\sin$ |
\cos |
$\cos$ |
\tan |
$\tan$ |
\csc |
$\csc$ |
\sec |
$\sec$ |
\cot |
$\cot$ |
微积分运算符
输入 |
显示 |
输入 |
显示 |
输入 |
显示 |
\int |
$\int$ |
\iint |
$\iint$ |
\iiint |
$\iiint$ |
\oint |
$\oint$ |
\prime |
$\prime$ |
\lim |
$\lim$ |
\infty |
$\infty$ |
\nabla |
$\nabla$ |
|
|
逻辑运算符
输入 |
显示 |
输入 |
显示 |
输入 |
显示 |
输入 |
显示 |
\because |
$\because$ |
\therefore |
$\therefore$ |
\forall |
$\forall$ |
\exists |
$\exists$ |
\not\subset |
$\not\subset$ |
\not< |
$\not<$ |
\not> |
$\not>$ |
\not= |
$\not=$ |
戴帽符号
输入 |
显示 |
输入 |
显示 |
输入 |
显示 |
输入 |
显示 |
\hat{xy} |
$\hat{xy}$ |
\widehat{xyz} |
$\widehat{xyz}$ |
\tilde{xy} |
$\tilde{xy}$ |
\widetilde{xyz} |
$\widetilde{xyz}$ |
\check{x} |
$\check{x}$ |
\breve{y} |
$\breve{y}$ |
\grave{x} |
$\grave{x}$ |
\acute{y} |
$\acute{y}$ |
连线符号
输入 |
显示 |
\fbox{a+b+c+d} |
$\fbox{a+b+c+d}$ |
\overleftarrow{a+b+c+d} |
$\overleftarrow{a+b+c+d}$ |
\overrightarrow{a+b+c+d} |
$\overrightarrow{a+b+c+d}$ |
\overleftrightarrow{a+b+c+d} |
$\overleftrightarrow{a+b+c+d}$ |
\underleftarrow{a+b+c+d} |
$\underleftarrow{a+b+c+d}$ |
\underrightarrow{a+b+c+d} |
$\underrightarrow{a+b+c+d}$ |
\underleftrightarrow{a+b+c+d} |
$\underleftrightarrow{a+b+c+d}$ |
\overline{a+b+c+d} |
$\overline{a+b+c+d}$ |
\underline{a+b+c+d} |
$\underline{a+b+c+d}$ |
\overbrace{a+b+c+d}^{Sample} |
$\overbrace{a+b+c+d}^{Sample}$ |
\underbrace{a+b+c+d}_{Sample} |
$\underbrace{a+b+c+d}_{Sample}$ |
\overbrace{a+\underbrace{b+c}_{1.0}+d}^{2.0} |
$\overbrace{a+\underbrace{b+c}_{1.0}+d}^{2.0}$ |
\underbrace{a\cdot a\cdots a}_{b\text{times}} |
$\underbrace{a\cdot a\cdots a}_{b\text{ times}}$ |
箭头符号
输入 |
显示 |
输入 |
显示 |
\to |
$\to$ |
|
|
\mapsto |
$\mapsto$ |
|
|
\implies |
$\implies$ |
|
|
\impliedby |
$\impliedby$ |
|
|
\iff |
$\iff$ |
|
|
\uparrow |
$\uparrow$ |
\Uparrow |
$\Uparrow$ |
\downarrow |
$\downarrow$ |
\Downarrow |
$\Downarrow$ |
\leftarrow |
$\leftarrow$ |
\Leftarrow |
$\Leftarrow$ |
\rightarrow |
$\rightarrow$ |
\Rightarrow |
$\Rightarrow$ |
\leftrightarrow |
$\leftrightarrow$ |
\Leftrightarrow |
$\Leftrightarrow$ |
\longleftarrow |
$\longleftarrow$ |
\Longleftarrow |
$\Longleftarrow$ |
\longrightarrow |
$\longrightarrow$ |
\Longrightarrow |
$\Longrightarrow$ |
\longleftrightarrow |
$\longleftrightarrow$ |
\Longleftrightarrow |
$\Longleftrightarrow$ |
其他
添加删除线
输入 |
显示 |
y+\cancel{x} |
$y+\cancel{x}$ |
\cancel{y+x} |
$\cancel{y+x}$ |
y+\bcancel{x} |
$y+\bcancel{x}$ |
y+\xcancel{x} |
$y+\xcancel{x}$ |
$$ \implies \frac{1\cancel{9}}{\cancel{9}{5}} = \frac{1}{5} $$
\implies \frac{1\cancel{9}}{\cancel{9}{5}} = \frac{1}{5}
矩阵
输入 |
显示 |
matrix |
$\begin{matrix} 1 & 2 \ 3 & 4 \ \end{matrix}$ |
pmatrix |
$\begin{pmatrix} 1 & 2 \ 3 & 4 \ \end{pmatrix}$ |
bmatrix |
$\begin{bmatrix} 1 & 2 \ 3 & 4 \ \end{bmatrix}$ |
Bmatrix |
$\begin{Bmatrix} 1 & 2 \ 3 & 4 \ \end{Bmatrix}$ |
vmatrix |
$\begin{vmatrix} 1 & 2 \ 3 & 4 \ \end{vmatrix}$ |
Vmatrix |
$\begin{Vmatrix} 1 & 2 \ 3 & 4 \ \end{Vmatrix}$ |
$$
\left[
\begin{array}{ccccc|c}
x^{(1)}_{0} & x^{(1)}_{1} & x^{(1)}_{2} & \cdots & x^{(1)}_{n} & y^{(1)} \\
x^{(2)}_{0} & x^{(2)}_{1} & x^{(2)}_{2} & \cdots & x^{(2)}_{n} & y^{(2)} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
x^{(m)}_{0} & x^{(m)}_{1} & x^{(m)}_{2} & \cdots & x^{(m)}_{n} & y^{(m)} \\
\end{array}
\right]
$$
\left[
\begin{array}{ccccc|c}
x^{(1)}_{0} & x^{(1)}_{1} & x^{(1)}_{2} & \cdots & x^{(1)}_{n} & y^{(1)} \\
x^{(2)}_{0} & x^{(2)}_{1} & x^{(2)}_{2} & \cdots & x^{(2)}_{n} & y^{(2)} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
x^{(m)}_{0} & x^{(m)}_{1} & x^{(m)}_{2} & \cdots & x^{(m)}_{n} & y^{(m)} \\
\end{array}
\right]
方程式序列
$$
\begin{array}{rl}
\sqrt{37} & = \sqrt{\frac{73^2-1}{12^2}} \\
& = \sqrt{\frac{73^2}{12^2}\cdot\frac{73^2-1}{73^2}} \\
& = \sqrt{\frac{73^2}{12^2}}\sqrt{\frac{73^2-1}{73^2}} \\
& = \frac{73}{12}\sqrt{1 - \frac{1}{73^2}} \\
& \approx \frac{73}{12}\left(1 - \frac{1}{2\cdot73^2}\right)
\end{array}
$$
\begin{array}{rl}
\sqrt{37} & = \sqrt{\frac{73^2-1}{12^2}} \\
& = \sqrt{\frac{73^2}{12^2}\cdot\frac{73^2-1}{73^2}} \\
& = \sqrt{\frac{73^2}{12^2}}\sqrt{\frac{73^2-1}{73^2}} \\
& = \frac{73}{12}\sqrt{1 - \frac{1}{73^2}} \\
& \approx \frac{73}{12}\left(1 - \frac{1}{2\cdot73^2}\right)
\end{array}
对齐
$$
f(n) =
\begin{cases}
\frac{n}{2}, & \text{if $n$ is even} \\
3n+1, & \text{if $n$ is odd}
\end{cases}
$$
f(n) =
\begin{cases}
\frac{n}{2}, & \text{if $n$ is even} \\
3n+1, & \text{if $n$ is odd}
\end{cases}
复杂表格
$$
\begin{equation}
\begin{array}{ccc}
\text{hash} & \text{year} & \text{coll. res.} & \text{size (bits)} & \text{design} &
\text{broken?} \\
\hline
\text{MD4} & 1990 & 64 & 128 & \text{32-bit ARX DM} & 1995 \\
\text{SHA-0 (SHA)} & 1993 & 80 & 160 & \text{32-bit ARX DM} & 1998 \\
\text{MD5} & 1993 & 64 & 128 & \text{32-bit ARX DM} & 2004 \\
\text{SHA-1} & 1995 & 80 & 160 & \text{32-bit ARX DM} & 2005 \\
\hline
\text{SHA-256 (SHA-2)} & 2002 & 128 & 256 & \text{32-bit ARX DM} & \\
\text{SHA-384 (SHA-2)} & 2002 & 192 & 384 & \text{64-bit ARX DM} & \\
\text{SHA-512 (SHA-2)} & 2002 & 256 & 512 & \text{64-bit ARX DM} & \\
\hline
\text{SHA-224 (SHA-2)} & 2008 & 112 & 224 & \text{32-bit ARX DM} & \\
\text{SHA-512/224} & 2012 & 112 & 224 & \text{64-bit ARX DM} & \\
\text{SHA-512/256} & 2012 & 128 & 256 & \text{64-bit ARX DM} & \\
\hline
\text{SHA3-224} & 2013 & 112 & 224 & \text{64-bit Keccak sponge} & \\
\text{SHA3-256} & 2013 & 128 & 256 & \text{64-bit Keccak sponge} & \\
\text{SHA3-384} & 2013 & 192 & 384 & \text{64-bit Keccak sponge} & \\
\text{SHA3-512} & 2013 & 256 & 512 & \text{64-bit Keccak sponge} & \\
\text{SHAKE128} & 2013 & {\leq}128 & \text{any} & \text{64-bit Keccak sponge} & \\
\text{SHAKE256} & 2013 & {\leq}256 & \text{any} & \text{64-bit Keccak sponge}
\end{array}
\end{equation}
$$
附录
希腊字母命令格式

特殊字符的命令格式

字符转义
希腊字母
No |
Code |
Symbol |
Code |
Symbol |
Code |
Symbol |
01 |
Α |
Α |
α |
α |
|
|
02 |
Β |
Β |
β |
β |
|
|
03 |
Γ |
Γ |
γ |
γ |
|
|
04 |
Δ |
Δ |
δ |
δ |
|
|
05 |
Ε |
Ε |
ε |
ε |
ϵ |
ϵ |
06 |
Ζ |
Ζ |
ζ |
ζ |
|
|
07 |
Η |
Η |
η |
η |
|
|
08 |
Θ |
Θ |
θ |
θ |
ϑ |
ϑ |
09 |
Ι |
Ι |
ι |
ι |
|
|
10 |
Κ |
Κ |
κ |
κ |
κ |
ϰ |
11 |
Λ |
Λ |
λ |
λ |
|
|
12 |
Μ |
Μ |
μ |
μ |
|
|
13 |
Ν |
Ν |
ν |
ν |
|
|
14 |
Ξ |
Ξ |
ξ |
ξ |
|
|
15 |
Ο |
Ο |
ο |
ο |
|
|
16 |
Π |
Π |
π |
π |
ϖ |
ϖ |
17 |
Ρ |
Ρ |
ρ |
ρ |
ϱ |
ϱ |
18 |
Σ |
Σ |
σ |
σ |
ς |
ς |
19 |
Τ |
Τ |
τ |
τ |
|
|
20 |
Υ |
Υ |
υ |
υ |
|
|
21 |
Φ |
Φ |
φ |
φ |
ϕ |
ϕ |
22 |
Χ |
Χ |
χ |
χ |
|
|
23 |
Ψ |
Ψ |
ψ |
ψ |
|
|
24 |
Ω |
Ω |
ω |
ω |
|
|
特殊字符
Code |
Symbol |
Code |
Symbol |
Code |
Symbol |
Code |
Symbol |
≡ |
≡ |
≈ |
≈ |
∼ |
∼ |
≅ |
≅ |
< |
< |
> |
> |
≤ |
≤ |
≥ |
≥ |
+ |
+ |
− |
− |
× |
× |
÷ |
÷ |
± |
± |
∠ |
∠ |
⟨ |
⟨ |
⟩ |
⟩ |
⊕ |
⊕ |
⊖ |
⊖ |
⊗ |
⊗ |
⨸ |
⨸ |
↑ |
↑ |
→ |
→ |
↓ |
↓ |
← |
← |
↔ |
↔ |
⊥ |
⊥ |
ˆ |
ˆ |
√ |
√ |
⊃ |
⊃ |
⊇ |
⊇ |
⊂ |
⊂ |
⊆ |
⊆ |
∩ |
∩ |
∪ |
∪ |
∈ |
∈ |
∋ |
∋ |
ø |
ø |
© |
© |
® |
® |
™ |
™ |
∀ |
∀ |
∃ |
∃ |
∧ |
∧ |
∨ |
∨ |
∥ |
∥ |
¬ |
¬ |
∧ |
∧ |
∨ |
∨ |
& |
& |
∣ |
∣ |
• |
• |
˙ |
˙ |
♣ |
♣ |
♦ |
♦ |
♥ |
♥ |
♠ |
♠ |
∫ |
∫ |
∂ |
∂ |
′ |
′ |
∇ |
∇ |
∝ |
∝ |
∞ |
∞ |
℘ |
℘ |
ℵ |
ℵ |